Frontotemporal degeneration (FTD)

Edward (Ted) Huey, M.D. Herbert Irving Assistant Professor of Psychiatry and Neurology Taub Institute for Research on Alzheimer's Disease and the Aging Brain Columbia University

Overview

- Case reports
- Normal function of affected brain areas
- FTD spectrum disorders
- Differential diagnosis
- Treatment
- Future directions

*not including ALS, PSP-like and CBD-like presentations

FTLD background

- 2nd most common cause of dementia in patients < 65 y.o.
- ~ 5-10% of all dementias

What do these brain areas do normally?

Normal functions of brain areas

• Frontal lobe

- Important for personality, higher cognitive functions, language production, how to perform complex activities, attention, motivation, emotional response, empathy, theory of mind
- Temporal lobe
 - Important for language comprehension, storage of knowledge about the attributes and characteristics of things

Symptoms of bv-FTD (Rascovsky et al. Brain 2011)

- Progressive deterioration of behavior and cognition
 - Behavioral disinhibition
 - Apathy
 - Loss of empathy
 - Perseverative or compulsive behaviors
 - Hyperorality and dietary changes
 - Neuropsychological profile c/w FTD

Primary Progressive Aphasias (language variant FTD)

- Nonfluent / agrammatic variant PPA
 - Non-fluent (halting, effortful speech), poor grammar, drop-out of words
- Semantic variant PPA
 - Fluent speech, impaired naming and comprehension
- Logopenic PPA
 - Word-finding difficulty, poor repetition, impaired "buffer" system

Semantic dementia and PNFA

Rohrer et al, Neurology 2009

Related syndromes

• <u>CBS</u>

- Cortical:
 - asymmetric apraxia and rigidity
 - alien limb, cortical sensory loss, myoclonus
- Basal ganglia:
 - bradykinesia
 - increased resistance to passive movement

• <u>PSP</u>

 vertical gaze palsy, axial dystonia, bradykinesia, rigidity, and falls

Kertesz et al., Brain 2005

2ND SYNDROME 3RD SYNDROME PATHOLOGY

Kertesz et al., Brain 2005

Kertesz et al., Brain 2005

From University of Utah, Dept. of Pathology

From University of Utah, Dept. of Pathology

Three major FTLD neuropathologies

Tau pathology

Ubiquitinated inclusions (FTLD-U)

Adapted from: Josephs KA. Ann Neurol. 2008 Jul;64(1):4-14

Differential diagnosis

- Patients with FTLD are often initially diagnosed with a different illness
 - Psychiatric disorder
 - Alzheimer's disease

Distinguishing FTD from AD

• Bv-FTD

- Early changes in personality, behavior, social cognition, and executive function with relatively intact memory and visuospatial ability
- Motor symptoms
- Nonfluent/agrammatic variant PPA
 - Relatively isolated to expressive aphasia
 - Aphasia and not word-finding difficulty
- Semantic variant primary progressive aphasia
 - Episodic memory relatively intact
 - Loss of semantic representation and not word-finding difficulty
 - Frontal behavioral syndrome

Distinguishing FTLD from a psychiatric disorder

- Cognitive dysfunction, especially executive dysfunction
- Progressive course
- Motor symptoms
- Family history
- New onset of psychiatric disorder
- Distress and deficits in social cognition

Aspect of multidisciplinary management	Early stage, mild impairment	Middle stage, moderate impairment	Advanced stage, severe impairment
Physician responsibilities	Diagnosis; Discussion of diagnosis and course of disease; Assessment of degree of assistance needed (e.g., home health aides); Assessment of burdensome symptoms and prescribing medications to manage them if necessary; Assessment for genetic testing and referral to a genetic counselor if warranted	Continued assessment of symptoms; Assessment of degree of assistance needed (e.g., possible out-of-home- placement); Discussion of medication efficacy, side effects, and dosing adjustments as needed	Assessment of degree of assistance needed (e.g. possible out-of-home- placement or hospice referral); Discussion of genetic implications of neuropathological findings after autopsy
Programmatic patient support	Consultations with cognitive re therapists, and/or occupational abilities; Caregiver assistance programs for meaningful activit Home health aides to help with Referrals to residential facilities	habilitation professionals, physion therapists to enhance life partion and supervision to complete backy; y; patient self-care tasks and phy s, palliative care and hospice wh	cal therapists, speech cipation and maintain functional sic activities of daily living; Day rsical and safety needs; nen appropriate
Caregiver support	Introduction to educational mat Home health aide or companio respite; Meetings with support Emotion-focused coping strate	erials and supportive local, nati n to assist caregiver; Day progr groups; gies for grief and loss and berea	onal, and online resources; ams to provide caregiver with avement support
Advance care planning	Identification of health-care proxy; Completion of power-of- attorney; Consultation with social worker regarding benefit eligibility	Consultation with a social worker; Identification of suitable hospice and/or residential care facilities	Discussions to help family and patient plan for a peaceful death; Logistic and financial planning for death

Domain	Symptom	Pharmacologic tx	Non-pharmacologic tx
Language symptoms	Expressive aphasia	None	Speech therapy; caregiver education; compensatory tools such as scripts and AACs
	Naming and comprehension deficits	None	Speech therapy; caregiver education on communication methods
Behavioral and neuropsychiatric symptoms	Apathy and inertia	None	Caregiver education and support; supervision and direction
	Agitation, aggression, and impulsive behaviors	Antidepressants, Atypical antipsychotics	Caregiver education; monitoring and removal of environmental triggers, caregiver oversight of physical and social environment
	Lack of empathy and sympathy	None	Caregiver education; caregiver support groups
	Perseverative and ritualistic behaviors	Antidepressants	Caregiver oversight; toleration of behavior; distraction
	Compulsive eating and dietary abnormalities	Antidepressants	Caregiver oversight of diet; environmental and physical modifications; consultation with dietician
Cognitive symptoms	Executive dysfunction	Evaluation for medications that could impair cognition	Consultation with cognitive rehabilitation therapist; compensatory tools
Motor symptoms	Falls	Evaluation for medications that could contribute to parkinsonism, orthostasis, or balance impairment	Environmental modifications; physical therapy; consultation with occupational therapist; walkers and/or wheelchairs
	Dystonia	Botulinum toxin injections	Splinting; physical therapy
	Parkinsonism	Carbidopa/levodopa trial (in part, for diagnostic purposes)	Caregiver support

Future directions

• What is the course of FTD?

Jacks, CR Lancet Neurology 2013

Future directions, cont.

- Treatment development
 - Novel targets
 - Tau (TauRx)
 - Symptom clusters
 - Tolcapone
 - Oxytosin
 - Select groups of FTD patients
 - nimodipine for *PGRN* mutation carriers

From Weng et al, Neural Networks, 2012

Catechol O-methyltransferase (COMT)

- Inactivates released dopamine through enzymatic conversion to 3-methoxytyramine
- Selectively regulates dopamine in the PFC
 - The cortical dopamine transporter has a 1,000fold higher affinity for dopamine than does COMT (Lewis et al, *J Comp Neurol* 2001).
 - However, in the PFC, the dopamine transporter is expressed at very low levels and does not appear to affect extracellular dopamine concentrations (Houtari et al, *J Pharm Ex Ther* 2002).

COMT cont.

- COMT has a has a common polymorphism that affects its function – a methionine (Met) for valine (Val) substitution at codon 158
- The enzyme in individuals with the met/met genotype has 3-4 X lower activity than in individuals with the val/val genotype (Lotta et al, *Biochem* 1995)

Effects of COMT val158met polymorphism in general population (Barnett et al, Biol Psy, 2008)

- Mixed evidence of a small dose-dependent effect (d=0.06) on executive function and WM in healthy control populations
- Larger effect size in patient populations (d=0.3-0.4)
- Findings c/w inverted-U model of frontal dopaminergic function.

inverted-U model of frontal dopaminergic function

Huey et al, submitted

- Examined effect of COMT val158met polymorphism in 110 patients with FTD and 64 patients with CBS.
- Analyzed D-KEFS, MDRS2, WMS-III, NPI, Finger tapping, Grooved pegboard, TOLA, MRI volumetric analysis
- we made a composite score for each of these domains to initially test as follows: the mean of the D-KEFS factor scores (executive), the mean of the WMS-III standardized scores (memory), and the mean of z-scores of the Finger Tapping, Grooved Pegboard, and TOLA scores

COMT Imaging analysis

- VBM analysis in SPM 8
- Images segmented into gray matter, white matter, and CSF. GM images normalized and smoothed. Corrected for TIV.
- Whole brain ANOVA performed in SPM8 on the effects of COMT val allele dosage on grey matter volumes. Clusters surviving an uncorrected threshold of p<0.001 and a cluster size of 30 voxels were considered significant.

Results

 There was a significant effect of the COMT val allele on our composite executive function measure, F(1, 76)=6.14, p=0.015, but no significant effect of the COMT val allele on the memory or motor composite measures.

Imaging results

<u>Figure 1</u>. Difference between grey matter volume in patient with two compared to no val alleles at the *COMT* val158met polymorphism. Dark areas show regions of decreased grey matter volume in patients with two val alleles. Areas shown are significant at an uncorrected voxel-level threshold of p < 0.001.

Why caudate?

- Included CBS patients
- Caudate receives extensive cortical afferent projections, esp. frontal association areas
- In animal models, head of caudate is especially vulnerable to dopamine depletion (*J Neurol* 2000)

Conclusions

- the COMT val158met polymorphism affects executive function and bilateral caudate volume in patients with FTD and CBS
- r = 0.22 between sorting score and COMT val dosage. Comparable to other patient populations.

 $\bullet \bullet \bullet$

Figure 1. Study design